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Abstract: This paper deals with cost and profit analysis ofoa- Abromovitz and Stegun [1] have introduced the
empty M /M /1/ N queuing system. A total cost function and totflindamental concepts on cost analysis of variousuiqg
profit function are constructed and optimized witspect to both models. Gross and Harris [2] have made an attempt o
arrival and service parameters by using a fast (Em_ging Newton- transient solution ofM /M /1/N queue, but the problem
Raphson's (abbreviated as N-R) method. The totaimap cost and a4ioys when the restriction on waiting capacityétaxed.
profit of the model are computed by solving a sjst# two non- Tarabia [10] has introduced an alternative simglpraach,

linear equations which are obtained by applying woyatiity .
conditions on the total cost function. Results tabled and also based on Laplace transform technique, to the stafly

presented graphically to better realize the perfante of the system transient behavior of non-emptyl /M /1/N queue. He has

in different working conditions. shown that the measures of effectiveness sucheafirsh and
Keywords: Cost analysis, profit analysis, total optimal ptofi second order moments of the queue length can bty eas
optimal arrival rate, optimal service rate. obtained in an elegant closed form. But he madattempt to
analyze the cost and profit of the model as verparant
1. INTRODUCTION aspects of the queuing system.

The non-emptyM /M /1/N queuing model is mostly  Takacs [9] obtained the transient solution for
applied in the field of inventory management, prithn /M /1/N queuing system using eigen-vectors and eigen-
management, computer and telecommunications, dte. {alues technique. Mishra and Pal [14] have intredu@
performance measures of the model can predict t&nputational approach toM /M /1/N  interdependent
efficiency, applicability, and quality of operatirgystem of ,0,ing system with controllable arrival rate. Tdnputer
the non-emptyM /M /1/ N queuing model. The applicabilitycoding in C programming language on the basis grithm
of the model depends on the total expected cospasfit of hayve been developed to efficiently carry out thaleation of
the system. The performance measures of the mastebe performance measures of the model. They have pesbéime
easily evaluated by using standard results. But rf@n gensitivity analysis for the model in order to makenore
problem is to optimize these measures in such athatythe efficient and applicable. Pern et al. [15] have sidered the
total expected cost and profit of.the system a@mp wit_h management policy of arM /G/1 queue with a single
respect to the parameters, arrival and services.rat@is removable and non-reliable server. They appliecfinient
problem can be solved only by using a powerfulmpation nat |ab programmer to calculate optimal thresholfi o
technique with the help of computer and its scinti management policy and some system characteristics.
programming language. Till now, no serious attehgs been Ke [16] has studied the control policy of the policy

made in this direction. . . M /G/1 queue with server vacation, start up, and
Sha_rma and Tarabia [6] obtf';uned the wransient staie,udowns where arrivals form a Poisson process an
probabilities for M/M /1/N queuing system whence allseryice times are generally distributed. He devedoipe total
particular cases concerning infinite waiting spanel steady- expected cost function per unit time to determires dptimal
state solutions can be derived straight away. Saaamd threshold ofN at a minimum cost. Mishra and Yadav [12]
Gupta [7] discussed the transient behavior of teug length analyzed the cost and profit fovl /E, /1 queuing model
of M/M/1/N queue using Chebych_e_v_s polynomial. The%ith removable service station under N-policy andady
expressed the transient state probabilities ofsyfaem free gq0 ¢ongitions. They introduced the notion oéltoevenue

LrorghBessel’és function which later led to the mamnethod to find the total profit of the system with respézttotal cost
y Sharma [8]. of the system.

Zhang et al. [5] developed a cost model fdr/M /1/N Tarabia [11] obtained a new and simple series flomthe
queuing system with balking, reneging, and sengrUONS yansjent state probabilities for non-emptyl /M /1/ o

g_nd detzrrtnmed th_e OdF’“m"?" serv(;cel rate. ITaham§$ ihueuing model. He has shown that the coefficientshis
ISCUSSEd WO queulng decision Models namely, pmad®n o o satisfy iterative recurrence relations. Xale[17] have

level model and a cost model. Both models recogtiiee . . ; .
higher service levels reduce the waiting time ia Hystem. discussed arM M /1. queue W'th. single working vacation
and set-up times using quasi birth and death psoessl

He discussed the two conflicting costs viz. sendost and matrix-aeometric  solution method. Thev  derived  the
waiting cost and established a cost model. Mishh adav distribu%ions for the stationar ueuellen thyarait' fime
[13] made an attempt on cost and profit analysisiofle . ya 9 "o

of a customer in the system.

server Markovian queuing system with two prioritgsses. In this paper. we obtain various performance messaf
They constructed the functions of total expectedst,co IS paper, w N various p o
revenue, and profit of the system and optimizedsghdN€ Non-emptyM /M /1/N queue by programming in C++.

functions with respect to service rates of lowed dnigher We construct a total cost function and total prafitction of
priority classes. the model and apply two-variable version of N-R moelt to
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obtain the optimal values of arrival raté and optimal dX ay

service rate u which optimize the total cost and profit Cly +C2{y6,u aﬂ}:o ()
functions. With optimal arrival and service ratethe ax Ox Oy dy

performance measures like optimal expected number Now, to find — ,and—= we proceed as follows:
customers in the system and optimal waiting timethia 0" ou’ o) Op

system are obtained. Finally, the numerical vakarestabled § N+1 P N+2

and also presented in graphs to better understied t Sincex = ;— N+1)( J +N(Zj ,

performance, applicability, and cost and profitelewof the H
model + +
) 1N N
y={1-—-|— +| = therefore,
2. COST ANALYSIS OF THE MODEL uo\u Y7,
The total cost function for this model is given by, " e
T =Cu+C,L 1 *
c =G+ Cols _ W ox_ 3y (n+a[ A an(n+2) A ®)
where, T is the total cost of the systerg, is the service oA u U U
cost per customer per unit timeg, is waiting cost per N N+1:
customer per unit time,o is the traffic intensity of the ﬂ:i[_l_(N +1)(i] +(N +2)(i] (9)
system, andL, is the expected number of customers in the 04 u H H ]
system which is as given by Tarabia (2001), 5 N N-+1T
X A1l A A
(1_ )(1_ N+1) if A£u H |
- if A=u N N-+1]
2 LA (—ijl ~1-(N +1)(ij +(N+ 2)(ij
(2) ou H)H U U
Where N is the capacity of the system. (1i)
Therefore, from (1) and (2) r\\?ﬁ haveN+2 From (8) and (10) we see that
—cu+c, o= (N+1)o™ + Np™2] ox _(_ A)ox it
1- N+1 N+2) Q
( p-—p " tp a,u ,u oA
A A N+1 y N+2 From (9) and (11), we observe that
‘(N+1)(] +N(J oy _(_A)ay
H H H —= (——]— (13)
=Cu+GC, ) T ou U ) 0A
A (A A ox 0y
1-—-|— +H— Let W=W(A, y)=y—=-x—2 and
H U H 0/ 041
ox 0y
N+ N+2 U=U(}, g)=Cy*+C {y—— —}
Let x= i—(N +1) (ij + N(ij ,and ! Tou “ou
H H H Therefore from (6) and (7), we have
PR I W(A, #)=0 andU (A, u)=0 (14)
y= 1———(—J +(—j The set of equations (14) represents a system ofnwn-
H \H H linear equations in two variabled and u. We solve this
Therefore, system by applying a two variable version of N-Rimod, as
Tc =Cu+C,x/y (3) discussed by Chapra and Canale [3], and the solafidhis
Differentiating (3) partially, with respect td and z, we get System will give critical poirffl, 77). According to this
ax dy method,
91 Tax oW, oW oW _
TR @ o ou |, M
ayx ay A(Jacobiah= 0, o oo |82 =| )
or_9y =, -, Vi
T y 6,u 0,1.1 oA ou ou 04

=C, +C, ®)

v A = A —% and L4, = 4, _T where (A, , ,ui) is the

For critical point(X, ), we must have% 9e _o . initial guess for (14)W =W(A , 1)
Therefore,
oX 0y
22 _x%-p 6
ya/\ Xa/l ©)
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U =0k ) oW (oW oW _(ow Now, we shall find second order partial derivatio@sT
I NV Y I WYY (A_’ﬂ_)' u \ou . )' appeared inl) and(I1). Differentiating equations (4) and (5)
U, (U ou, (U partially with respect tol and u , we get
— == , and — . Therefore, we 2 2
a4 s o\ ou 9°x_ 0%y 0y} 0x_ 0y
(A u4) (A .u) 2 Yo7 —X
0°Te _ N2 9> _ 04704 04
oW oW du ou =C,
need to find——-, —, —- ,and—. A? y? y®
0A " ou’ aA ou
Now, L
2 2 0°x 9%y L0y [ 0x_ 0
ow = rx_ X—a y (15 .2 2 2 y{y y}
04 % A 0°Te _ | ou op?  ou ou 6/1
2 T2 2 3
SR WIS
ou \A)|Tou Toul \a)|T a2 T op? L
Usin 12 and 13 in 4), we et
U oy 92x 62y g (@12 jond 13) 4 g
=20y 4Gyl y g X (17) y X 0¥
ou ou ou?  ou 0T ¢ (_ﬁj ou a,u
2 sy (%22 we
041 A 041 04
H Therefore from (5), we hang—C =C, (—ﬁj (&—QJ
oA 0% x 62y 18) 04 A)\ ou
2w or on 0°Te {_1)(0% _c ]J{_EJGZTC
From (15), (16), (17), and (18), we require audA A)log ) ou?

%x 0%y 9%x a2y Using (12) and (13) in (5), we get
2 2 2 2
a2 a2 ou ou Jox_ oy
Therefore, differentiating (8), (9), (10), and (&) follows: &2C1+C2(—ija/]—za/]
a2 x N N op H y
= =[-N(N+1P S+ N(N+D)(N +2) S
ox° u u JT, A)aT,
52 N N Therefore from (4), we havea—C =C, + (——ja—;
9 Y ol N(N+D) 2L +(N+2)(N +1)-2— H H
0/12 N+1 N+2 2
H H T _(_1)0Tc (_A)9°Te
0Adu u) 04 1) 0N
02 X _ /1 5 AN+1 AN+2
P {ZF‘(N +2)(N+1P s N N(N+2)(N+3- "0 | 3 pROFIT ANALYSIS OF THE MODEL
- We now find the total expected pro(lTP) of the system
2 N4l n+2 7 ©OnN the basis of the total revenue earned by theesysn
0%y _ —21—(N +)(N+2) +(N+2)(N+3) A rendering its service to the customers.
ou? s N sl Suppose thatR is the earned revenue for providing the

The total cost functio will be optimum at the critical

service to each customer then total expected r«a/éfw) of
the system is given byl; = RL,. From (1), total cost of the
system isT. =C i+ C,L,. Therefore total expected profit of

R PR L the system will be
) A2 dAdu 9°T
point (/1 \ ,u) if (1) T, 87T, >0, (1) OTZC>0. Tp =Tg - Te =RLs = (C, +C, Ls)=(R-C,)Ls - C,  (19)
oA P

After calculating the optimal arrival and servietes A

and g respectively, we find the performance measures s‘ifstemT_p

The optimal arrival and service rated and 7

respectively optimize the total expected profittioé system
given by (19). We evaluate the total optimal prafft the

and analyze the effect of variations in parameters

the system which are optimal expected number ooousrs it by developing a computing algorithm in C++.
in the systemL, and optimal waiting time in the systeW

by applying Little’s law, which states that —AWS and
computer programming in C++,
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4.SENSITIVITY ANALYSIS OF THE MODEL
A computing algorithm in C++ is developed to congut

the optimal arrival and service ratdls and 77 respectively
which optimize the total cosT. of the system and total
expected profitT, of the system which are given by (1) and
(19) respectively. The performance measures ofsistem
Liand W, are also computed with the help of computing

algorithm. The changes in these performance measdrine
system with respect to variations in the parametaiing
cost, service cost, and capacity of the systempatied in
various tables.

The outcomes are also presented in graphs toiexhéb
correlation between these parameters and perfornang

—e— Optimal expected no. of customers in the system —s— Total optimal cost
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Service cost

measures. Observations are drawn on the basis istingx
tables and graphs to better realize the efficieranyd
performance of the system in different circumstance

Fig. 1.2: Service Cost vs. Total Optimal Cost

Table no 2: Waiting Cost vs. various Performance

. . Measures
Table no 1: Service Cost vs. various Performancasves N =40, C, = 300
N =40, C, = 380 — — —
- — — — ] (C) ) @ L] w| )
() (4) A Ls We = 3.80 3.86 391 182 472 8091
300 | 386] 391 182 472 8091748 388 | 393 182 469 9922
4.00 384 389 182 474 84717 5gp 3.90 3.9 182 467  117.55
500 | 382] 387 182 476 8846538 391 | 396 182 465 13584
600 | 3.8l 38§ 18% 478 92267780 392 | 397 182 464 15413
7.00 380] 383 182 479 96.037 g3go 3.93 3909 182 463  172.43
8.00 380) 384 18 487 1011747935 3.94 399 182 462  190.75
900 | 380] 384 185 487 1050179080] 394 | 4.0 179 454 20529
1000] 3.79) 383 18» 48 108F3 7780 395| 400 182 461 22781
1100 3.78) 384 185 48 1124471580 395| 401 179 453 24108
1200] 3.78) 3.83 18p 4.8 11626 1330 3.96 402 179 452 25900
13001 3.77) 384 182 4.8 11806879480 396 | 402 179 452 27710
1400 3.77| 3.8] 1802 491 1237
—e—Optimal amival rate —s— Optimal senice rate
—e— Optimal arrival rate —a— Optimal senice rate 4 Optimal waiting time in the system
—— Optimal waiting time in the system
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Fig. 2.1: Waiting Cost vs. Optimal Waiting Timethre

Fig. 1.1: Service Cost vs. Optimal Waiting Timetlie
System
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—e— Optimal expected no. of customers in the system —s— Total optimal cost
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Fig. 2.2: Waiting Cost vs. Total Optimal Cost

Table no 3: Capacity of the System vs. various
Performance Measures

C, = 300, C, = 380

N 1) (#) L W, (T_c)

40 3.86 391 182 472 8001
44 3.42 3.46 200 46D  865p
48 3.21 325 215 467 916D
52 3.09 312 2371 465 9961
56 3.00 3.04 244 46k  102.02
60 2.94 298 259 468  107.20
64 2.90 293 284 46p  116.43
68 2.86 2.89 299 458 12228
72 2.83 2.86 314 461  127.16
76 2.80 2.84 311 458 126.81
80 2.76 2820 288 45p  117.90
84 2.76 2.80 335  45p 13590

—e—Optimal arrival rate

—a— Optimal senice rate

—— Optimal waiting time in the system

5

Now

service rates

[N

Optimal arrival and

0\ T T T T T T T T T T
40 44 48 52 56 60 64 68 72 76 80 84

Capacity of the system

Fig. 3.1: Capacity of the System vs. Optimal Wajtirime
in the System
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Fig. 3.2: Capacity of the System vs. Total OptiQakt

Table no 4: Service Cost vs. Total Optimal Profit
N =45C, =325

© | @) @ | ()

6.50 4.32 3.88 768.98
7.50 4.32 3.88 765.0b
8.50 4.32 3.88 761.1y
9.50 4.32 3.88 757.2D
10.50 4.32 3.88 753.411
11.50 4.32 3.88 749.53
12.50 4.32 3.88 745.65
13.50 4.32 3.88 741.717
14.50 4.32 3.88 737.89
15.50 4.32 3.88 734.01
16.50 4.32 3.88 730.18
17.50 4.32 3.88 726.25
18.50 4.32 3.88 722.3/7
19.50 4.32 3.88 718.49

—e—Optimal arrival rate —s— Optimal service rate —a— Total Optimal Profit

4.4 - 780
= 43 —0—0—0—0—0—0—¢—0—0 ¢4 770 -
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e P ]
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o 371 + 700 —
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Service cost

Fig. 4: Service Cost vs. Total Optimal Profit




Table no 5: Waiting Cost vs. Total Optimal Profit
N =45, C, = 650

(C) ) (A) ()

4.50 4.32 384 723.20
5.50 4.32 384 686.78
6.50 4.32 384 65027
7.50 4.32 384 613.75
8.50 4.32 384 577.24
9.50 4.32 384 540.78
10.50 4.32 384 504.2p
1150 4.32 389  467.7D
1250 4.32 389 4311
1350 4.32 389  394.68
1450 4.32 389 3581
15.50 4.32 389  321.6b
16.50 4.32 384  285.14
17.50 4.32 389 24863

4.4

I
1
[e]
o
o
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—+ t t t T
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o O O o o

A
r 200
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—e—Optimal arrival rate —s— Optimal senvice rate —a— Total optimal profit

Total optimal profit

Fig.5: Waiting Cost vs. Total Optimal Profit

Table no 6: Capacity of the System vs. Total OpttiRrafit
C, = 650,C, = 350

N %) @ | (%)

45 4.32 3.88 759.81
50 4.32 3.88 864.79
55 4.32 3.88 970.63
60 4.32 3.88 1077.06
65 4.32 3.88 1183.817
70 4.32 3.88 1290.98
75 4.32 3.88 1398.16
80 4.32 3.87 1510.18
85 4.32 3.87 1617.59
90 4.32 3.87 1725.08
95 4.32 3.87 1832.50
100 4.32 3.87 1939.98
105 4.32 3.87 2047.4b
110 4.32 3.87 2154.96

—e—Optimal arrival rate —s— Optimal senvice rate —— Total optimal profit
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Fig. 6: Capacity of the System vs. Total Optimadfier

Table no 7: Earned Revenue vs. Total Optimal Profit
R NT @] & @)
20.00 75 6.50 3.50 1070.7
22.00 75 6.50 3.50 1203.5
24.00 75 6.50 3.50 1336.4
26.00 75 6.50 3.50 1469.2
28.00 75 6.50 3.50 1602.0
30.00 75 6.50 3.50 1734.9
32.00 75 6.50 3.50 1867.7

34.00 75 6.50 3.50 2000.5

D
D
D
D
D
D

36.00 75 6.50 3.5 2133.4
38.00 75 6.50 3.5 2266.7
40.00 75 6.50 3.5 2399.0
42.00 75 6.50 3.5 2531.9
44.00 75 6.50 3.5 2664.7
46.00 75 6.50 3.5 2797.6

O~NWOONOUUNOWOU RF NN

—a— Total optimal profit

=200 1

Total optimal
PN
o [$a)
o o
o o

500

0 T T T T 1
0 10 20 30 40 50

Earned revenue

Fig. 7: Earned Revenue vs. Total Optimal Profit

Observations: In Figure 1.1, we observe that the optimal

arrival and service rates decrease very slowly dpttmal
waiting time in the system shows increasing trenith w
fluctuations as service cost increases. Therefereice cost
and optimal waiting time in the system are in pusit
correlation. In Figure 1.2 we see that total optiowst of the
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system increases as service cost increases. Inafamiit important performance measures of the system. prdiglem
16.6% increase in service cost causes approx. fitPéase has good deal of potential to the applicationsarious fields

in the total optimal cost of the system. Thus sendost and including
telecommunications, production management etc.

total optimal cost of the system are in positiverelation.
The optimal expected number of customers in thdesys

inventory  management, computer  and

remains constant as service cost increases.Ind-igudr, we 6. REFERENCES

see that the optimal arrival and service rates em®e
gradually as waiting cost increases. The optimatimgatime [1]
in the system shows decreasing trend with fluobumstin the

end as waiting cost increases. Thus waiting codtagiimal [2]
waiting time in the system are in negative coriefat In
Figure 2.2, we observe that the total optimal ooistthe [3]
system increases as waiting cost increases. Areaser of
17.2% (approx.) in waiting cost results about 15i6&sease [4]
in the total optimal cost of the system. Thus waitcost and
total optimal cost of the system are in positivereation. [5]
The optimal expected number of customers in thdesys
does not vary as waiting cost increases.In Figulle ®e
observe that the optimal arrival and service ratesreases
very slowly as capacity of the system increaseg dptimal [6]
waiting time in the system shows a decreasing treitt
some fluctuations as capacity of the system ineea$hus
capacity of the system and optimal waiting timehia system [7]
are in negative correlation. In Figure 3.2, we thexdt the total
optimal cost of the system and optimal expected barmnof
customers in the system increase gradually as itgpdche [8]
system increases. In fact approx. 7.7% increasethan
capacity of the system causes approx. 3% increasptimal [9]
expected number of customers in the system and 2.6%
increase in total optimal cost of the system.InuFég4, we [10]
observe that the total optimal profit of the sysigreases as
service cost increases. In fact, about 13.3% iser@aservice
cost causes 0.5% decrease in total optimal prdfithe [11]
system. Thus a very weak negative correlation batwe
service cost and total optimal profit is seen. Tdpimal
arrival and service rates do not vary as servicat cfl2]
increases.In Figure 5, we see that as waitinginostases the
total optimal profit of the system decreases carsidly. In

fact, about 5.3% decrease in total optimal prafibbserved

due to about 18.2% increase in waiting cost. Thera [13]
negative correlation between waiting cost and tofatimal
profit of the system. The optimal arrival and seevirates
remain constant when waiting cost increases. lnrei@, we
observe that the total optimal profit of the systeereases as
capacity of the system increases. An increaseuwfits in the [14]
capacity of the system results about 12.2% incréagetal
optimal profit of the system. The optimal arrivaidaservice
rates are constant when capacity of the systeneases.In
Figure 7, we see that as earned revenue increhsewtal
optimal profit of the system increases rapidly. Abd@.7%
increase in the earned revenue gives approx. Mttéase in
total optimal profit of the system. Thus earnederaye and
total optimal profit of the system are in posito@relation.

[15]

[16]

5. CONCLUSION

Here, we have succeeded in presenting the cospraxid
analysis of non-empty /M /1/ N queuing system. This has
led us to efficiently evaluate optimal arrival rawptimal [17]
service rate, and optimal expected number of custsiin the
system, optimal waiting time in the system, totalimal cost
of the system, and total optimal profit of the systas
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Abstract. The correlations between GDP/capita
growth rates of 27 European countries are scanned i
various moving time window sizes. The square awstag
correlation coefficients are taken as the link veggfor a
network having the countries as vertices. The nétwo
average degree and the weight set variance aredidan
be monotonic functions on the time window size. The
statistics of the weight distributions as well aset
adjacency matrix eigensystem are discussed. A new
measure of the so called country overlapping ispps®d
and applied to the network. The ties and clusteeshaetter
emphasized through a threshold analysis. The derive
clustering structure is found to confirm intuitiver
empirical aspects, like the convergence clubshiae a
remarkable consistency with the results reportedtha
actual economic literature.

Keywords: fluctuations, correlations, network, clusters

PACS numbers: 89.65.Gh, 89.75.Fb, 05.45.Tp

1. INTRODUCTION

Modelling the dependences between  the
macroeconomic (ME) variables has to take into astou
circumstances that differ substantially from those
encountered in the natural sciences. First, exmgeriation
is usually not feasible and is replaced by sunesearch,
implying that the explanatory variables cannot be
manipulated and fixed by the researcher. Second, th
number of possible explanatory variables is oftesiteq
large, unlike the small number of carefully chosen
treatment variables frequently found in the natural
sciences. Third, the ME time series are short amidyn
Most data have a yearly frequency. When social time
series have been produced for a very long perfmtetis
usually strong evidence against stationarity.

Some macroeconomic (ME) indicators are monthly
and/or quarterly registered, increasing in this whg
number of available data points, but some additionse
is naturally enclosed in the time series so geadrat
(seasonal fluctuations, external and internal shange
shocks, etc). This seems to be a solid argumenhéfact
that the main data sources, at least the oney fagallable
on the web, tend only to keep the annual averages/of
growth of the ME indicators.

Let us consider, for example, a time interval of on
hundred years, which is mapped onto a graphicdl qflo
100 data points. From the statistical physics viamp
100 is a quitsmallnumber of data points, surely too small
for speaking about the so called “thermodynamidtlim
On the other hand, from a socio-economic pointiefw
we can justifiably wonder if a growth, say, of 2%amy
ME indicator has at the present time the same mgaa
it had one century ago. One must take into accthat
during that time, the social, politic and economic
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environment was drastically changed. Moreover the
methodology of data collecting and processing w@ayo
different from what it was two generations ago.ded, the
economic world is created by people and is sulisifnt
changing from a generation to another one (somstime
also during one and the same generation). Thus,why

of statistical data aggregation turns to be comrsial.

On the other hand, an increasing interest in ndétwor
analysis has been registered during the last decade
particularly due to its potential unbounded area of
application. Indeed, the inter-disciplinary (orhat trans-
disciplinary) concept of “network” is frequently mia all
scientific research areas, its covering field sjragfirom
the computer science to the medicine and social
psychology. Moreover it proves to be a reliabledfei
between the natural and social sciences, so thentec
interest in this field is fully justified.

Using the strong methodological arsenal of the
mathematical graph theory, the physicists mainued
on the dynamical evolution of networks,i.e. on the
statistical physics of growing networks. The renadik
extension from the concept of classical random fyfdp
to the one of non-equilibrium growing network [2losvs
for accounting the structural properties of randmmplex
networks in communications, biology, social scienaed
economics [3, 4]. Indeed, the field of the possible
applications seems to be unbounded, it spanning fie
“classical” WWW and Internet structures [5, 6] tonse
more sophisticated social networks of scientific
collaborations [7-9], paper citations [10] or calige
listening habits and music genres [11].

In most approaches, the Euler graph theory legas
preserved, especially as regards to the “Boolehatacter
of links: two vertices can only be either tied at nied,
thus the elements of the so-called adjacency matly
consist of zeros and ones. However, many biological
social networks, and particularly almost all ecoimm
networks, must be characterised different strengths of
the links between vertices. This aspect led tocthecept
of “weighted network” as a natural generalisatidnttee
graph-like approaches. Of course, various ways of
attaching some weights to the edges of a fully ected
network [12-14]. Some ways to relate the weightshi®
correlations between various properties of nodes haen
proposed in the recent literature [15-18].

The correlation coefficientS; between two ME time
series &} and {y}, i, j = 1, ..., N, is calculated in the
present work according to the (Pearson’s) classical
formula:
<Xy >-<x><y; >

@)

C,(tT)=

\/< xi-<x >P><yl-<y, >



