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Abstract:  This paper deals with cost and profit analysis of a non-
empty NMM /1//  queuing system. A total cost function and total 
profit function are constructed and optimized with respect to both 
arrival and service parameters by using a fast converging Newton- 
Raphson’s (abbreviated as N-R) method. The total optimal cost and 
profit of the model are computed by solving a system of two non-
linear equations which are obtained by applying optimality 
conditions on the total cost function. Results are tabled and also 
presented graphically to better realize the performance of the system 
in different working conditions.  
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1. INTRODUCTION 

The non-empty NMM /1//  queuing model is mostly 
applied in the field of inventory management, production 
management, computer and telecommunications, etc. The 
performance measures of the model can predict the 
efficiency, applicability, and quality of operating system of 
the non-empty NMM /1//  queuing model. The applicability 
of the model depends on the total expected cost and profit of 
the system. The performance measures of the model can be 
easily evaluated by using standard results. But the main 
problem is to optimize these measures in such a way that the 
total expected cost and profit of the system are optimal with 
respect to the parameters, arrival and service rates. This 
problem can be solved only by using a powerful optimization 
technique with the help of computer and its scientific 
programming language. Till now, no serious attempt has been 
made in this direction.  

Sharma and Tarabia [6] obtained the transient state 
probabilities for NMM /1//  queuing system whence all 
particular cases concerning infinite waiting space and steady-
state solutions can be derived straight away. Sharma and 
Gupta [7] discussed the transient behavior of the queue length 
of NMM /1//  queue using Chebychev’s polynomial. They 
expressed the transient state probabilities of the system free 
from Bessel’s function which later led to the matrix method 
by Sharma [8].  

Zhang et al. [5] developed a cost model for NMM /1//  
queuing system with balking, reneging, and server vacations 
and determined the optimal service rate. Taha [4] has 
discussed two queuing decision models namely, an aspiration 
level model and a cost model. Both models recognize the 
higher service levels reduce the waiting time in the system. 
He discussed the two conflicting costs viz. service cost and 
waiting cost and established a cost model. Mishra and Yadav 
[13] made an attempt on cost and profit analysis of single 
server Markovian queuing system with two priority classes. 
They constructed the functions of total expected cost, 
revenue, and profit of the system and optimized these 
functions with respect to service rates of lower and higher 
priority classes.  

Abromovitz and Stegun [1] have introduced the 
fundamental concepts on cost analysis of various queuing 
models. Gross and Harris [2] have made an attempt on 
transient solution of NMM /1//  queue, but the problem 
tedious when the restriction on waiting capacity is relaxed. 
Tarabia [10] has introduced an alternative simple approach, 
based on Laplace transform technique, to the study of 
transient behavior of non-empty NMM /1//  queue. He has 
shown that the measures of effectiveness such as the first and 
second order moments of the queue length can be easily 
obtained in an elegant closed form. But he made no attempt to 
analyze the cost and profit of the model as very important 
aspects of the queuing system.  

Takacs [9] obtained the transient solution for 
NMM /1//  queuing system using eigen-vectors and eigen-

values technique. Mishra and Pal [14] have introduced a 
computational approach to NMM /1//  interdependent 
queuing system with controllable arrival rate. The computer 
coding in C programming language on the basis of algorithm 
have been developed to efficiently carry out the evaluation of 
performance measures of the model. They have presented the 
sensitivity analysis for the model in order to make it more 
efficient and applicable. Pern et al. [15] have considered the 
management policy of an 1//GM  queue with a single 
removable and non-reliable server. They applied an efficient 
Mat lab programmer to calculate optimal threshold of 
management policy and some system characteristics.  

Ke [16] has studied the control policy of the N policy 
1//GM  queue with server vacation, start up, and 

breakdowns where arrivals form a Poisson process and 
service times are generally distributed. He developed the total 
expected cost function per unit time to determine the optimal 
threshold of N at a minimum cost.   Mishra and Yadav [12] 
analyzed the cost and profit for 1// kEM  queuing model 

with removable service station under N-policy and steady 
state conditions. They introduced the notion of total revenue 
to find the total profit of the system with respect to total cost 
of the system.  

Tarabia [11] obtained a new and simple series form for the 
transient state probabilities for non-empty ∞/1// MM  
queuing model. He has shown that the coefficients in this 
series satisfy iterative recurrence relations. Xu et al. [17] have 
discussed an 1// MM  queue with single working vacation 
and set-up times using quasi birth and death process and 
matrix-geometric solution method. They derived the 
distributions for the stationary queue length and waiting time 
of a customer in the system. 

In this paper, we obtain various performance measures of 
the non-empty NMM /1//  queue by programming in C++. 
We construct a total cost function and total profit function of 
the model and apply two-variable version of N-R method to 
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obtain the optimal values of arrival rate λ  and optimal 
service rate µ  which optimize the total cost and profit 

functions. With optimal arrival and service rates, the 
performance measures like optimal expected number of 
customers in the system and optimal waiting time in the 
system are obtained. Finally, the numerical values are tabled 
and also presented in graphs to better understand the 
performance, applicability, and cost and profit level of the 
model.    

 
2. COST ANALYSIS OF THE MODEL 

The total cost function for this model is given by, 

sC LCCT 21 += µ                                                               (1) 

where, CT  is the total cost of the system, 1C  is the service 

cost per customer per unit time, 2C  is waiting cost per 

customer per unit time, ρ  is the traffic intensity of the 

system, and sL  is the expected number of customers in the 

system which is as given by Tarabia (2001), 
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Where, N is the capacity of the system. 
Therefore, from (1) and (2) we have 
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Therefore,  
yxCCTC 21 += µ                                                      (3) 

Differentiating (3) partially, with respect to λ  and µ , we get 
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From (8) and (10), we see that  
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Therefore from (6) and (7), we have 
( ) 0, =µλW  and ( ) 0, =µλU                      (14) 

The set of equations (14) represents a system of two non-
linear equations in two variables λ  and µ . We solve this 

system by applying a two variable version of N-R method, as 
discussed by Chapra and Canale [3], and the solution of this 
system will give critical point( )µλ , . According to this 

method, 
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Therefore, differentiating (8), (9), (10), and (11) as follows: 
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 After calculating the optimal arrival and service rates λ  

and µ  respectively, we find the  performance measures of 

the system which are optimal expected number of customers 
in the system sL  and optimal waiting time in the system sW  

by applying Little’s law, which states that ss WL λ=  and 

computer programming in C++.  

Now, we shall find second order partial derivatives of CT  

appeared in ( ) ( )IIandI . Differentiating equations (4) and (5) 

partially with respect to µλ  and , we get  
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Using (12) and (13) in (4), we get 
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Using (12) and (13) in (5), we get  
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3. PROFIT ANALYSIS OF THE MODEL 

We now find the total expected profit ( )PT  of the system 

on the basis of the total revenue earned by the system in 
rendering its service to the customers. 

Suppose that R  is the earned revenue for providing the 
service to each customer then total expected revenue ( )RT  of 

the system is given by, sR LRT = . From (1), total cost of the 

system is sC LCCT 21 += µ . Therefore total expected profit of 

the system will be 
 

( ) ( ) µµ 1221 CLCRLCCLRTTT sssCRP −−=+−=−=  (19) 

 
The optimal arrival and service rates λ  and µ  

respectively optimize the total expected profit of the system 
given by (19). We evaluate the total optimal profit of the 
system PT  and analyze the effect of variations in parameters 

on it by developing a computing algorithm in C++. 



 17 

 
4. SENSITIVITY ANALYSIS OF THE MODEL 

A computing algorithm in C++ is developed to compute 
the optimal arrival and service rates λ  and µ  respectively 

which optimize the total cost CT  of the system and total 

expected profit PT  of the system which are given by (1) and 

(19) respectively. The performance measures of the system 

sL and sW  are also computed with the help of computing 

algorithm. The changes in these performance measures of the 
system with respect to variations in the parameters waiting 
cost, service cost, and capacity of the system are putted in 
various tables. 

 The outcomes are also presented in graphs to exhibit the 
correlation between these parameters and performance 
measures. Observations are drawn on the basis of existing 
tables and graphs to better realize the efficiency and 
performance of the system in different circumstances.  

 
Table no 1: Service Cost vs. various Performance Measures 

80.3,40 2 == CN  
(C1) )(λ  )(µ  sL  sW  ( )CT      

3.00 3.86 3.91 18.2 4.72 80.91 
4.00 3.84 3.89 18.2 4.74 84.71 
5.00 3.82 3.87 18.2 4.76 88.46 
6.00 3.81 3.86 18.2 4.78 92.26 
7.00 3.80 3.85 18.2 4.79 96.03 
8.00 3.80 3.84 18.5 4.87 101.17 
9.00 3.80 3.84 18.5 4.87 105.01 
10.00 3.79 3.83 18.5 4.88 108.73 
11.00 3.78 3.82 18.5 4.89 112.44 
12.00 3.78 3.82 18.5 4.89 116.26 
13.00 3.77 3.82 18.2 4.83 118.68 
14.00 3.77 3.81 18.2 4.91 123.74 
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Fig. 1.1: Service Cost vs. Optimal Waiting Time in the 

System 
 

0

20

40

60

80

100

120

140

3 4 5 6 7 8 9 10 11 12 13 14

Service cost

Optimal expected no. of customers in the system Total optimal cost

 
Fig. 1.2: Service Cost vs. Total Optimal Cost 

 
Table no 2: Waiting Cost vs. various Performance 

Measures 
00.3,40 1 == CN  

(C2) )(λ   )(µ  
sL  sW  ( )CT      

3.80 3.86 3.91 18.2 4.72 80.91 
4.80 3.88 3.93 18.2 4.69 99.22 
5.80 3.90 3.95 18.2 4.67 117.55 
6.80 3.91 3.96 18.2 4.65 135.84 
7.80 3.92 3.97 18.2 4.64 154.13 
8.80 3.93 3.98 18.2 4.63 172.43 
9.80 3.94 3.99 18.2 4.62 190.75 
10.80 3.94 4.00 17.9 4.54 205.29 
11.80 3.95 4.00 18.2 4.61 227.31 
12.80 3.95 4.01 17.9 4.53 241.18 
13.80 3.96 4.02 17.9 4.52 259.20 
14.80 3.96 4.02 17.9 4.52 277.10 
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Fig. 2.1: Waiting Cost vs. Optimal Waiting Time in the 

System 
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Fig. 2.2: Waiting Cost vs. Total Optimal Cost 

 
 

Table no 3: Capacity of the System vs. various 
Performance Measures 

80.3,00.3 21 == CC  

 
N )(λ   )(µ  

sL  sW  ( )CT      

40 3.86 3.91 18.2 4.72 80.91 
44 3.42 3.46 20.0 4.69 86.56 
48 3.21 3.25 21.5 4.67 91.60 
52 3.09 3.12 23.7 4.65 99.61 
56 3.00 3.04 24.4 4.64 102.02 
60 2.94 2.98 25.9 4.63 107.20 
64 2.90 2.93 28.4 4.62 116.73 
68 2.86 2.89 29.9 4.54 122.28 
72 2.83 2.86 31.4 4.61 127.76 
76 2.80 2.84 31.1 4.53 126.81 
80 2.76 2.82 28.8 4.52 117.90 
84 2.76 2.80 33.5 4.52 135.90 
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Fig. 3.1: Capacity of the System vs. Optimal Waiting Time 

in the System 
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Fig. 3.2: Capacity of the System vs. Total Optimal Cost 

 
 

Table no 4: Service Cost vs. Total Optimal Profit 
25.3,45 2 == CN  

 
(C1) )(λ   )(µ  ( )PT      

6.50 4.32 3.88 768.93 
7.50 4.32 3.88 765.05 
8.50 4.32 3.88 761.17 
9.50 4.32 3.88 757.29 
10.50 4.32 3.88 753.41 
11.50 4.32 3.88 749.53 
12.50 4.32 3.88 745.65 
13.50 4.32 3.88 741.77 
14.50 4.32 3.88 737.89 
15.50 4.32 3.88 734.01 
16.50 4.32 3.88 730.13 
17.50 4.32 3.88 726.25 
18.50 4.32 3.88 722.37 
19.50 4.32 3.88 718.49 
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Fig. 4: Service Cost vs. Total Optimal Profit 
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Table no 5: Waiting Cost vs. Total Optimal Profit 
50.6,45 1 == CN  

(C2) )(λ   )(µ  ( )PT      

4.50 4.32 3.88 723.20 
5.50 4.32 3.88 686.78 
6.50 4.32 3.88 650.27 
7.50 4.32 3.88 613.75 
8.50 4.32 3.88 577.24 
9.50 4.32 3.88 540.73 
10.50 4.32 3.88 504.22 
11.50 4.32 3.89 467.70 
12.50 4.32 3.89 431.19 
13.50 4.32 3.89 394.68 
14.50 4.32 3.89 358.17 
15.50 4.32 3.89 321.65 
16.50 4.32 3.89 285.14 
17.50 4.32 3.89 248.63 
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Fig.5: Waiting Cost vs. Total Optimal Profit 

 
 

Table no 6: Capacity of the System vs. Total Optimal Profit 
50.3,50.6 21 == CC  

N )(λ   )(µ  ( )PT      

45 4.32 3.88 759.81 
50 4.32 3.88 864.79 
55 4.32 3.88 970.63 
60 4.32 3.88 1077.06 
65 4.32 3.88 1183.87 
70 4.32 3.88 1290.93 
75 4.32 3.88 1398.15 
80 4.32 3.87 1510.18 
85 4.32 3.87 1617.59 
90 4.32 3.87 1725.03 
95 4.32 3.87 1832.50 
100 4.32 3.87 1939.98 
105 4.32 3.87 2047.46 
110 4.32 3.87 2154.96 
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Fig. 6: Capacity of the System vs. Total Optimal Profit 

 
 

Table no 7: Earned Revenue vs. Total Optimal Profit 
 R N (C1) (C2) ( )PT      

20.00 75 6.50 3.50 1070.74 
22.00 75 6.50 3.50 1203.57 
24.00 75 6.50 3.50 1336.41 
26.00 75 6.50 3.50 1469.25 
28.00 75 6.50 3.50 1602.08 
30.00 75 6.50 3.50 1734.92 
32.00 75 6.50 3.50 1867.75 
34.00 75 6.50 3.50 2000.59 
36.00 75 6.50 3.50 2133.42 
38.00 75 6.50 3.50 2266.26 
40.00 75 6.50 3.50 2399.09 
42.00 75 6.50 3.50 2531.93 
44.00 75 6.50 3.50 2664.77 
46.00 75 6.50 3.50 2797.60 
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Fig. 7: Earned Revenue vs. Total Optimal Profit 
 
Observations: In Figure 1.1, we observe that the optimal 

arrival and service rates decrease very slowly but optimal 
waiting time in the system shows increasing trend with 
fluctuations as service cost increases. Therefore service cost 
and optimal waiting time in the system are in positive 
correlation. In Figure 1.2 we see that total optimal cost of the 
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system increases as service cost increases. In fact about 
16.6% increase in service cost causes approx. 4.1% increase 
in the total optimal cost of the system. Thus service cost and 
total optimal cost of the system are in positive correlation. 
The optimal expected number of customers in the system 
remains constant as service cost increases.In Figure 2.1, we 
see that the optimal arrival and service rates increase 
gradually as waiting cost increases. The optimal waiting time 
in the system shows decreasing trend with fluctuations in the 
end as waiting cost increases. Thus waiting cost and optimal 
waiting time in the system are in negative correlation. In 
Figure 2.2, we observe that the total optimal cost of the 
system increases as waiting cost increases. An increase of 
17.2% (approx.) in waiting cost results about 15.6% increase 
in the total optimal cost of the system. Thus waiting cost and 
total optimal cost of the system are in positive correlation. 
The optimal expected number of customers in the system 
does not vary as waiting cost increases.In Figure 3.1, we 
observe that the optimal arrival and service rates decreases 
very slowly as capacity of the system increases. The optimal 
waiting time in the system shows a decreasing trend with 
some fluctuations as capacity of the system increases. Thus 
capacity of the system and optimal waiting time in the system 
are in negative correlation. In Figure 3.2, we see that the total 
optimal cost of the system and optimal expected number of 
customers in the system increase gradually as capacity of the 
system increases. In fact approx. 7.7% increase in the 
capacity of the system causes approx. 3% increase in optimal 
expected number of customers in the system and 2.6% 
increase in total optimal cost of the system.In Figure 4, we 
observe that the total optimal profit of the system decreases as 
service cost increases. In fact, about 13.3% increase in service 
cost causes 0.5% decrease in total optimal profit of the 
system. Thus a very weak negative correlation between 
service cost and total optimal profit is seen. The optimal 
arrival and service rates do not vary as service cost 
increases.In Figure 5, we see that as waiting cost increases the 
total optimal profit of the system decreases considerably. In 
fact, about 5.3% decrease in total optimal profit is observed 
due to about 18.2% increase in waiting cost. There is a 
negative correlation between waiting cost and total optimal 
profit of the system. The optimal arrival and service rates 
remain constant when waiting cost increases. In Figure 6, we 
observe that the total optimal profit of the system increases as 
capacity of the system increases. An increase of 5 units in the 
capacity of the system results about 12.2% increase in total 
optimal profit of the system. The optimal arrival and service 
rates are constant when capacity of the system increases.In 
Figure 7, we see that as earned revenue increases the total 
optimal profit of the system increases rapidly. About 7.7% 
increase in the earned revenue gives approx. 9.1% increase in 
total optimal profit of the system. Thus earned revenue and 
total optimal profit of the system are in positive correlation. 

 
5. CONCLUSION 

Here, we have succeeded in presenting the cost and profit 
analysis of non-empty NMM /1//  queuing system. This has 
led us to efficiently evaluate optimal arrival rate, optimal 
service rate, and optimal expected number of customers in the 
system, optimal waiting time in the system, total optimal cost 
of the system, and total optimal profit of the system as 

important performance measures of the system.  The problem 
has good deal of potential to the applications in various fields 
including inventory management, computer and 
telecommunications, production management etc. 
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  Abstract. The correlations between GDP/capita 
growth rates of 27 European countries are scanned in 
various moving time window sizes. The square averaged 
correlation coefficients are taken as the link weights for a 
network having the countries as vertices. The network 
average degree and the weight set variance are found to 
be monotonic functions on the time window size. The 
statistics of the weight distributions as well as the 
adjacency matrix eigensystem are discussed. A new 
measure of the so called country overlapping is proposed 
and applied to the network. The ties and clusters are better 
emphasized through a threshold analysis. The derived 
clustering structure is found to confirm intuitive or 
empirical aspects, like the convergence clubs i.e. have a 
remarkable consistency with the results reported in the 
actual economic literature. 

Keywords: fluctuations, correlations, network, clusters 
PACS numbers: 89.65.Gh, 89.75.Fb, 05.45.Tp 

 
1. INTRODUCTION 

  Modelling the dependences between the 
macroeconomic (ME) variables has to take into account 
circumstances that differ substantially from those 
encountered in the natural sciences. First, experimentation 
is usually not feasible and is replaced by survey research, 
implying that the explanatory variables cannot be 
manipulated and fixed by the researcher. Second, the 
number of possible explanatory variables is often quite 
large, unlike the small number of carefully chosen 
treatment variables frequently found in the natural 
sciences. Third, the ME time series are short and noisy. 
Most data have a yearly frequency. When social time 
series have been produced for a very long period, there is 
usually strong evidence against stationarity. 

Some macroeconomic (ME) indicators are monthly 
and/or quarterly registered, increasing in this way the 
number of available data points, but some additional noise 
is naturally enclosed in the time series so generated 
(seasonal fluctuations, external and internal short range 
shocks, etc). This seems to be a solid argument for the fact 
that the main data sources, at least the ones freely available 
on the web, tend only to keep the annual averages/rates of 
growth of the ME indicators. 

Let us consider, for example, a time interval of one 
hundred years, which is mapped onto a graphical plot of 
100 data points. From the statistical physics viewpoint, 
100 is a quite small number of data points, surely too small 
for speaking about the so called “thermodynamic limit”. 
On the other hand, from a socio-economic point of view, 
we can justifiably wonder if a growth, say, of 2% of any 
ME indicator has at the present time the same meaning as 
it had one century ago. One must take into account that 
during that time, the social, politic and economic 

environment was drastically changed. Moreover the 
methodology of data collecting and processing is today 
different from what it was two generations ago. Indeed, the 
economic world is created by people and is substantially 
changing from a generation to another one (sometimes 
also during one and the same generation). Thus, this way 
of statistical data aggregation turns to be controversial.  

On the other hand, an increasing interest in network 
analysis has been registered during the last decade, 
particularly due to its potential unbounded area of 
application. Indeed, the inter-disciplinary (or rather trans-
disciplinary) concept of “network” is frequently met in all 
scientific research areas, its covering field spanning from 
the computer science to the medicine and social 
psychology. Moreover it proves to be a reliable bridge 
between the natural and social sciences, so the recent 
interest in this field is fully justified.  

Using the strong methodological arsenal of the 
mathematical graph theory, the physicists mainly focused 
on the dynamical evolution of networks, i.e. on the 
statistical physics of growing networks. The remarkable 
extension from the concept of classical random graph [1] 
to the one of non-equilibrium growing network [2] allows 
for accounting the structural properties of random complex 
networks in communications, biology, social sciences and 
economics [3, 4]. Indeed, the field of the possible 
applications seems to be unbounded, it spanning from the 
“classical” WWW and Internet structures [5, 6] to some 
more sophisticated social networks of scientific 
collaborations [7-9], paper citations [10] or collective 
listening habits and music genres [11]. 

   In most approaches, the Euler graph theory legacy was 
preserved, especially as regards to the “Boolean” character 
of links: two vertices can only be either tied or not tied, 
thus the elements of the so-called adjacency matrix only 
consist of zeros and ones. However, many biological and 
social networks, and particularly almost all economic 
networks, must be characterised by different strengths of 
the links between vertices. This aspect led to the concept 
of “weighted network” as a natural generalisation of the 
graph-like approaches. Of course, various ways of 
attaching some weights to the edges of a fully connected 
network [12-14]. Some ways to relate the weights to the 
correlations between various properties of nodes have been 
proposed in the recent literature [15-18].  

   The correlation coefficients Cij between two ME time 
series {xi} and {yj}, i, j = 1, …, N, is calculated in the 
present work according to the (Pearson’s) classical 
formula: 
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